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Abstract

This Special Topic essay is aimed to address various aspects, extensions and ap-
plications of the concept of Estrada’s Communicability (EC) in networks. Here
after a formal definition of EC in networks, mathematical properties of it are
discussed. In particular, a new upper bound related to the edge cardinality of
the network is provided for EC (in contrast with other bounds that only take
the number of nodes into account). Then a new measure of communicability,
Truncated Exponential Communicability (TEC) is introduced which has simi-
lar properties to EC and can bear more physical significance in modelling the
information flow in networks. Then the concept of communicability distance is
discussed and extended to TEC. Section applying binarizing filters on resulting
distance matrices can recover the topology of the network and also be applicable
in other related problems. For the rest of the essay, an application of network
communicability and distance matrix binarization in neuroscience of stroke is
presented and some new results based on recently developed functional imaging
and optogenetical stimulation techniques are demonstrated.
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Chapter 1

Communicability in
Networks

1.1 Introduction

Over the past several years, the mathematical quantification of networks has
become increasingly important in a number of fields. Network analysis is used
in many situations: from determining network structure and communities, to
describing the interactions between various elements of the network, to investi-
gating the dynamics of phenomena taking place on the network (e.g. information
flow, pandemics)[1, 2].

One of the fundamental questions in network analysis is to determine how
nodes (which are not necessarily adjacent) in the network, interact with each
other or in other words, how much an excitation in node v; is felt in node v;. The
idea of communicability is devised by Estrada. et al [3] to be such a measure.

The intuition behind this concept is that in many real-world situations the
communication between a pair of nodes in a network does not take place only
through the optimal shortest-path routes connecting both nodes, but through
all possible routes connecting both nodes, the number of which can be enor-
mous in the complex networks. The information can also go back and forth
before arriving at the end node of a given route. The network communicabil-
ity quantifies such correlation effects in the communication between nodes in
complex networks. The most important point that we will use to apply this
concept to neuroscience applications is that the number of routes along which
the correlation can grow is crucial in the analyses of the structures of complex
networks.

From a physical point of view, calculation of communicability between two
nodes is similar to performing a path integral between them where we compute
a weighted sum of all possible paths in between. That is why communicability
can be interpreted as the propagator (Green’s function) of the network[4].

Now let us begin our discussion by providing a mathematical definition of
communicability.



1.2 Mathematical Definition

Here we will define the concept of communicability using a combinatorial ap-
proach. Let us consider simple graphs G = (V| E) with |V| = n nodes and
|E| = m edges, undirected, unweighted, without self-loops and multiple edges
between nodes.

Definition 1. a walk of length k is a sequence of (not necessarily different)
nodes, say indexed by {vo,v1, - ,vp_1} such thatVi=1,--- k,{v;_1,v;} € E.

The adjacency matrix of a graph, denoted by A, gives all the walks of length
1 between edges. To count the walks of higher length, one could compute the
powers of A which are called moments.

Definition 2. the moment, ux(p,q) = (AF),, gives the number of walks of
length k from node p to q.

Now a weighted sum of moments can be considered as a measure of com-
municability in the graph which in some sense, summarizes the connectivity
information by generalizing the concept of shortest path. The main reasons for
such a generalization is that in many networks which represent the information
flow between nodes (e.g. neural , transportation and communication networks),
the shortest path is not the only significant pathway between nodes and the ac-
tual interaction between nodes is carried out via multiple paths. The weighted
sum of moments should penalize the paths with longer lengths in some way. Say
if we give a general summation by:

Gpg = chﬂk(pv q) = ch(Ak)pq (1.1)
k=0 k=0

The coefficients ¢ should be chosen in a way to: (i) penalize longer walks by
giving less weight to them (or equivalently be proportional to a monotonically
decaying function of k) , (ii) make sure the series 1.1 converges , and (iii) give
a real positive value to the communicability as it is being considered as some
sort of connectivity measure.

Polynomial candidates for ¢ (e.g. %, 7z, - fail to satisfy the convergence
requirement [3]. However, assuming an inverse factorial relationship fulfils all
the needed properties. Hence we define:

Definition 3. The communicability between nodes p and q is defined as:

© Ak
Gy =Y Bl (eny,, (1.2
k=0

The matrix exponential (e?) is defined as the matrix Taylor series of expo-
nential function [3, 5):
2 Ak

A
A _ T H N
A =T+ At ot (1.3)

The matrix G = e? is called the communicability matrix.
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Figure 1.1: Graph — adjacency matrix — communicability matrix

Spectral decomposition or specifically Schur decomposition of G has a close
relation with that of adjacency matrix (we will prove this in the next section):

G=Qe*QT  where A =QAQT (1.4)

or for a pair of nodes we can write:
Gpq = Z ¢;(p); (Q)e)\j ) (1.5)
j=1

where ¢;(p) is the pth element of jth orthonormal eigenvector of A (or (Q)y; )
and \; is the jth eigenvalue of A [3].

1.3 The Bounds of Communicability

The matrix exponential is the most studied matrix function [5]. The interest in
it stems from its crucial role in the solution of systems of differential equations
which mostly appear in modern control theory. Depending on the application,
the problem may be to compute e® for a given A, to compute e®? for a fixed
A and many ¢, or to apply e® or eAt to a vector [5].

To begin with, let us review some of the basic properties of matrix exponen-
tial. In the study of e®, two representations have seen to be useful. First the
power series representation which we encountered in the previous section :

A2 AF

A_ AT A
et =T+ At r et St (1.6)



Another representation is:

A : 1 n
et = nh—>Holo(I + EA) (1.7)
This formula is the limit of the first order Taylor expansion of %A raised to the
power n € N [5].

As for the first property, we are going to show that matrix exponential is
bounded for any bounded matrix. Therefore we need to show that ||e| < oo
if ||A|| < oo for any well-defined matrix norm. Here we will give the proof for

Frobenius norm which is defined as: [[A[lr = /> ,_; A7, where A € R"*".

Theorem 1. [5] For A € R"*" and ||A|lp < oo, the matriz exponential is
bounded
le®)lF < o0 (1.8)

Proof. Using the definition of Frobenius norm, for any matrix B with elements
B;; we have

|Bij| < Bl and  [B*|r < |BJf, (1.9)
Ak
Now by taking B = % we can say:
o~ (AF) - [A*F _ o~ AR
(€)pg = Z il M < Z il < Z Tl E = elalr (1.10)
k=0 ’ k=0 ’ k=0 )
which implies:
(eA)pq < eHAH’fv — ||6AHF < nellAlle (1.11)

and as we have assumed ||A||r < oo, the series is convergent and the theorem
is verified. O

This theorem gives rise to another theorem which bounds the root mean
square of communicability (and therefore all other averages) of a simple graph
as follows:

Theorem 2. ! The root mean square of the communicability in a network (Grus)
with n nodes and m edges is bounded by:

e\/Zm
Grus <
Proof. By definition:
1 TN
Grus = SlIGllr = —le”llr (112)
now using Theorem 1 we can write:
ellAllr

1
Grus = EHGA”F < (1.13)

n

1 This theorem is proved by the author of the essay and is original



However, for a simple graph we have ||Al|r = \/2m(1)? = v2m. Hence by
considering the relationship between G rars and arithmetic mean (G),geometric

mean (G) and harmonic mean (G ) we get:

e\/ 2m

n

Gn <G <G<Grus < (1.14)

O

To find another bound and also to extend our discussion to the physical
interpretation of communicability, let us prove the eigen-decomposition property
of the exponential matrix.

Theorem 3. The eigen-decomposition of matriz exponential e® for a diago-
nalizable square matriz A € R™"™ where A = PAP™! with eigenvalues A =
diag(A1, Ag, -+ ) is obtained by:

e = PelrP!
where e® = diag(eM,e*2 .. -)

Proof. Let us rewrite A* using the given eigen-decomposition:

k times
AF = (PAP )" =PAP 'PAP'P-..-P'PAP 'PAP! (1.15)
e~ Y~ Y= =
I I I I
Which gives:
AF =PAFP! (1.16)

Now by putting back everything into the series we will have:
~AF I PARP?
A _ _ _ p,Ap-1
k=0 k=0

and also we know that for a diagonal matrix A = diag(A1, Ag,--+)

AR = diag(\E Nk . (1.18)

hence we get:
e® = diag(et, 2, ---) (1.19)
O

One useful remark on the Theorem 3 can be made by considering the fact
that adjacency matrix of simple graphs is symmetric which implies the existence
of Schur decomposition where instead of P and P~! we can replace orthogonal
matrices Q and QT : A = QAQT = eA = QeAQT. In [3] Estrada et al.
use the Schur decomposition of the adjacency matrix of complete graphs to
establish other bounds on the communicability. However, they fail to calculate
the communicability matrix of a complete graph accurately. Here we will use
another property of matrix exponential to achieve our goal.



Theorem 4. If two matrices A € R™*™ and B € R™*™ commute (i.e. [A,B] =
AB — BA = 0) then we have:

Proof. The commutation of matrices allows us to treat them as scaler numbers.
Therefore, by writing binomial expansion, the proof will be straightforward. For
detailed proof look at [5]. O

Now let’s use this theorem to calculate the communicability matrix of a
complete graph. First we need to establish a lemma:

Lemma 1. Matriz exponential of an all-one square matriz (1, € R"*™ :
(1n)i; =1Vi,j=1---n)is obtained by:

"1
eln =T+ ¢ 1,
Proof. noting that 1% = n*=11,, we have:
S L | e —1
1, _ n _ no_
e '_g%k!_1+g; o =1, (1.20)

O

As the adjacency matrix of a complete graph with n nodes can be constructed
as K,, = 1,,—1I (i.e. all-one except diagonal elements equal to 0) we can calculate
the communicability matrix it using Theorem 4 and Lemma 1 as follows:

Theorem 5. The communicability matrix of a complete graph of size n with
adjacency matriz K,, = 1,, — I is:

1 m—1
Kn = 2 <I+ ¢ 1n>
e n

Proof. Using Theorem 4 and considering the fact that —I commutes with all

. . . 1
equidimensional matrices and e~! = = (I), we have:
e

1 n—1
eKn = eln T = g7leln — = (I + ¢ 1n> (1.21)
e n
or element-wise we have:
e —1 . -
e i F ]
(eK”)ij = {enl+n . (122)
ne =

O

Intuitively, complete graphs are the most connected ones. Hence cross-
communicability and self-communicability of a complete graph with n nodes
is an upper bound for communicability of all the graphs of n nodes regard-
less of number of edges. Moreover, Theorem 1 shows that the communicability
increases with the number of edges which confirms the intuitive deduction as
complete graphs have the maximum number of edges.



1.4 Communicability for Directed and Weighted
Graphs

The concept of communicability can be easily extended to directed and weighted
networks by taking the matrix exponential of their adjacency matrix. In general
case of weighted networks, a normalization of adjacency matrix is recommended.
Based on the work of Crofts and Higham [6], we have:

G =W AW (1.23)

Where A is the weighted adjacency matrix and W is the diagonal matrix of
degrees. This definition of weighted communicability has been shown to be
applicable in the applications of neuroscience and connectomics. In the next
section, we will introduce a new form of communicability function which may
have more physical implications.

1.5 Truncated Exponential Communicability for
Weighted Graphs

Lets assume that our network is kind of communication network in which nodes
can communicate through signals which get linearly attenuated before being
received. That is, every link in the network has an effect on the signal being
transmitted modelled by a Beer-Lambert law :

Ij = Iie_a”wij (124)

where I; and I_j are the intensity of the signal at the transmitting and receiving
nodes respectively. w;j is a relevant form of distance between nodes which can
be replaced by a function of the weights of the edges and «;; > 0 is called the
attenuation coefficient of the link from i to 5 and models the physical properties
of the link and it can be asymmetric in case of media with polarity(e.g. neurons).
Evidently, as the distance between nodes (w;;) gets larger, received signal gets
exponentially weaker. Keeping this model in mind, let us define another measure
of communicability:

Definition 4. For a weighted graph G with adjacency matriz A the truncated
exponential communicability (TEC) of order N € N is defined as

N

Cy=> (E-B)* (1.25)

k=0

where elements of E are negative exponentials of A:
(E)i; = exp[—(AT);] (1.26)

and B is the logical not of transpose of adjacency matriz (B = —=AT) which can

be written as:
_J0 (A)i#0
(B)i; = {1 (A); "o (1.27)

10



A wise choice of N is the diameter of the graph d(G) to make sure all nodes
effect each other. In this case, we will drop N from the notation:

d(G)
c=> (E-B) (1.28)
k=0

To illustrate an example of application of CV, consider the graph in Figure
1.2 with adjacency matrix given by 1.29.

V]
[ ]
Wiz wi3
0 w12 W13 W21 wsg
A= w21 0 W23 (129)
w
w31 wsz 0 23 1
V2.' .Vg
w32

Figure 1.2: Weighted K3

Now let us suppose there are three sources of signal with intensities S =

(I, I, I3)" located at corresponding nodes of the graph and suppose the inten-
sity of signal at each node obeys a Beer-Lambert law with superposition and
Q5 = 1.
Another crucial assumption that is to be made is considering that the signal will
completely dissipate after a certain number of send/receives (here N), which
means, the network will not be able to detect the signal due to multiple atten-
uations. Then the intensity of the signal at nodes can be calculated as:

SV =cNs (1.30)

for example for the graph above, with N = 0,1, 2,3 (maximum number of times
that the signal can be sensed and sent), the intensity at node v is:

N=0, IY=I
N=1, I} =L + Le ™ 4 L;e™"»

N =2, I? =1 + Iye™ 2!  J3e~"3!
+Il(€_(w12+w21) +e—(w13+w31))

_|_12(€*(w23+w31))_|_I3(e*(w21+w32))
N =3, I3 =1 + Le v 4 [3e~ "t

_|_

+Il (e—(w12+w21) + e—(w13+w31))

+1, (e*(w23+w31)) + 13(6*(w21+w32))

+I (e—(w12+w23+w31) + e—(w13+w21+w32))

+12(€—(w12+2w21) + e~ (w2s+ws2+w21) + 67(w13+w21+w31))
(

13 e—(w13+2w31) +€_(w23+w32+w31) +6_(w12+w21+w31))

11



Which is exactly what we would like to get as the super position of all send /receives
with appropriate attenuations. Figure 1.3 shows all the paths that signal gets
transmitted to vy for NV = 2.

Wi

+loe " 4 Ize
+[1€—(w12+w21) _|_]](f(“'1:;+u':;1 )
_{_[‘)(3*(“'2:;+u':;1) +I‘3€*(?1/’21+1n32)

w23
Figure 1.3: Superposed signal intensity at v1 : (S3); = (C?S);

Evidently, TEC is a physically meaningful concept and its application on a
vector has a clear meaning and application. But how is it compared to the usual
communicability (G) ? Figure 1.4.a shows the element-wise 1-norm difference of
normalized communicability and TEC(N = 10) for the graph shown in Figure
1.1. As you see the element-wise difference is extremely small. Figure 1.4.b
compares two communicability measures in matrix 2-norm and frobinus norm.
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Figure 1.4: TEC(C) and Estrada Communicability(G) are very close

1.6 Communicability Distance

In this section we are interested in analysing how much of an activity/excitation
is received by the pairs of nodes and how much of it is transmitted from one
to the other. The physical intuition behind the definition of communicability
distance is that if there is a thermal disturbance to the whole network, how
large is the difference between the absorbed and transmitted excitation between
two nodes?

Communicability distance is defined by Estrada et al. in [7] and is given by
the following definition.

12



Definition 5. For a graph with communicability matriz G, the communica-
bility distance between two nodes p and q is defined by:

20 = Gup+ Ggg — 2Gy (1.31)

Considering the eigen-decomposition of G as in:

n

qu = Z ¢j (p)¢j (Q)ehj )

j=1

Here we show that &,, acts like the Euclidean distance between two vectors
¢,et/? and ¢ et/?.

Theorem 6. [7] Given x, = ¢p,e*/? and x, = ¢ e/?:

€pq =/ [1%p — 4]
Proof. let’s rewrite ff,q as in
g;%q = (d)p - ¢q)T€A(¢p - ¢q) (132)
and regroup it as
;12)q = (6A/2(¢p - ¢q))T€A/2(¢p - ¢q) (133)
= (M2, — M2, (NP9, — N2, (1.34)

now using the definition of x,, and x, we have

€pq = (Xp — Xq)T(Xp — Xq) (1.35)
=/ lIxp — x4l (1.36)
Therefore &, behaves like euclidean distance and has all its properties. O

Communicability distance can also be defined for TEC in the same way. We
define:

Definition 6. For a graph with TEC matriz CY, the TEC distance between
two nodes p and q is defined by:

N\2 _ N | oN _ N
(qu) =C,, +Cy —Cpy (1.37)

13






Chapter 2

Distance Matrix
Binarization(DMB)

In this section we will introduce the idea of distance matrix binarization (DMB)
by an example. Next we will provide a mathematical definition of it and show
its non-trivial application for dealing with communicability distance matrices.

2.1 Second Neighbour connectivity: an example
for DMB

Let us begin with a straightforward example. Take a 5 x 5 grid graph as shown
in Figure 2.1. This graph is obviously connected (i.e there exists a path between

T
L]

Figure 2.1: Grid graph (5 x 5)

o—O,

= O/—V«.—_

each pair of nodes in the graph). Now imagine we can only move in steps of
length 2 ,that is, if we are at node v; and want to crawl the graph, we can only
jump to one of our second neighbours. But will be able to pass all the nodes
starting from any initial node? In other words, is the graph still connected with
step-size 27 Let’s try it by moving from vy to ve. It is impossible,therefore, the
graph is not connected with step-size 2. Here we propose an obvious way to
find the [-step model of the graph by binarization of the distance matrix of the

15



graph. Here we give the adjacency matrix of the resulting graph by
(Agl)ij = By(di;) where d;; = [D];;. (2.1)

Here B; is a binarization method which is defined as a function of distance
matrix and for this simple case is:

0 otherwise

By(d) = {1 d=1 (2.2)

Equation 2.1 takes the distance matrix D of the graph G and discards all the
elements which are not equal to [ and mapped the rest to 1. Figure 2.2 shows
the distance matrix of our grid graph and the binarized output of Equation 2.1.

0

251 1 1 1 125

1 5 10 15 20 25 1 5 10 15 20 25

Distance Matrix Binarized Distance Matrix: Adjacency matrix of step-2 model

Figure 2.2: The effect of DMB algorithm, D — Ay

Now by taking the resulted matrix as the adjacency matrix we will have a
new graph. Visualization of Ay gives a disconnected graph as we speculated
before. Figure 2.3 shows the resulting graph. As we see, the nodes v; and v
are in disconnected sub-graphs.

V20 Vio vy Vi V21

(@ O, O]
Vas Vs vy vi7
V3 ( | un | F V23
V22 V2 vy vig
& O
Vie V6 Vis Vas

Figure 2.3: step-2 model of the 5 x 5 grid graph. Red edges show the 2-step
connectivity between nodes

Obviously for I = 1 the method gives the adjacency graph of the matrix and
the resulting graph would be identical.

16



2.2 Communicability Distance Matrix Binariza-
tion (CDMB)

Here we will give a general definition of Distance Matrix Binarization.

Definition 7. a binarization method B(d;;) is a function that maps elements
of distance matriz d;; = (D);; to the set {0,1}. A distance matriz binariza-
tion model (DMBM) of the graph G using the binarization method B is the
graph F§ which is defined by its adjacency matriz as:

(Ag)ij = B(d;;) (2.3)
Here F stands for filter as the operation is similar to the filtering of images.

The non-trivial application of DMB becomes evident when dealing with other
distance metrics on the network. In this section, we will show the result of DMB
on two different distance matrices Estrada communicability distance matrix &
and TEC distance matrix DV .

One possible application is to recover the topology of the network based
on distance or correlation data coming from the interaction of nodes. As an
example, let us introduce a thresholding binarization method which maps all
the distances in a certain interval to 1 and the rest to zero or mathematically:

1 0 <d<0pu

. (2.4)
0 otherwise

BgL,GH (d) = {

Now let us take the graph in 2.4.a as an example. Figure 2.4.b, 2.4.c ,2.4.d
and 2.4.e show its adjacency matrix, normalized distance matrix, normalized
Estrada distance matrix and normalized TEC distance matrices respectively.

1 5 10 16

1 5 10 16
b: adjacency matrix

1 10 1

10 16 1

c: shorfest path distance  d: Eétrada distance e: TEC distance

16

Figure 2.4: Knight Tour Graph (4 x 4), and three distance matrices

Figure 2.5 and Figure 2.6 demonstrates DMB of this graph using € and D
(N = d(G)) for different thresholding intervals:

17
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Figure 2.5: DMB using Estrada Distance

0 € {081}

0 € {0.54,0.61}

0 € {0.55,0.68}

0 c {08,009}

Figure 2.6: DMB using TEC Distance
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Considering the details of Figure 2.5.* and 2.6.* , we observe that binariza-
tion of communicability distance matrix can approximately recover the topology
of the original graph. Indeed for simple classes of networks like paths, rings and
grids, CDMB recovers the network exactly. Figure 2.7 shows the exact recovery
of a Grid graph using CDMB by Estrada distance.

8=0 6),=0.18 6,=022 0,=023

84=0.25 8/=0.31 0,=0.32 0,/=0.35

X

%
R
\\
%
%
%

DAIXIXIXIX

| SEE S S S S
e e S e 3

X

A\
\\
X

04=0.38 0,=042 0,=044 0y =1

Figure 2.7: Recovery of a grid graph by binarization of its Estrada distance
matrix. Here 6 =0

This recovery property will be very useful when we only have information
about either communicability (correlation) or distance of nodes and do not know
the topology of the network. In the next section, we are going to make use of
this method to detect the connectivity of brain neural networks when we only
know the correlation of neurons.
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Chapter 3

Applications in
Neuroscience

Sebastian Seung, an MIT Physicist and Neuroscientist has popularized the
motto I am my connectome, that basically means: every complex aspect of hu-
man behaviour is coded in the connectivity pattern of neurons in the brain[8].
Detecting the connectivity of neurons and monitoring its changes under patho-
logical conditions or developmental processes is an extremely challenging task.
Mathematical tools and techniques developed in the area of network science can
be applied to these problems[2, 1, 9]. There are myriad papers on applications
of network science in the study of nervous systems which shows that these ap-
proaches are exceptionally powerful in characterizing structural and functional
brain networks. To begin with explaining our desired application, a general
description of the structure of the brain does not hurt.

The brain is divided up into cortical areas which in many macroscopic and
mesoscopic models are taken as the nodes of the network where edges are mod-
elled as white matter fibres (Section 3.1) or by functional correlation between
areas (Section 3.2). In some microscopic models, every single neuron is consid-
ered as a node and links represent synaptic connections in between.

In the next section we will review the application of Communicability in
identification of changes in the connectivity of the human brain after stroke
where data is collected using DTT technique. Next we will discuss a much more
reliable data acquisition method (VSD + Optogenetics)and will demonstrate
the results of application of communicability analysis on that data.

3.1 Previous Results on Identification of Stroke
Lesions using Communicability

Anatomical and functional alterations in brain structure occur in distant re-
gions after stroke. Such changes could spread across widely distributed brain
networks. In the research done by Crofts et al. [9, 6] they used diffusion MRI
tractography to assess connectivity between brain regions in chronic stroke pa-
tients and age-matched controls.

They applied Estrada’s communicability analysis to measure the permeability

21



with which information can travel across the network. Their work showed that
communicability analysis can be successfully used to cluster individuals into
patient and control groups, not only in the lesioned hemisphere but also in the
contralesional hemisphere, despite the absence of gross structural pathology in
the latter.

The strategy was to select a group of whom, lesions were localised to the a
certain brain area (left basal ganglia/internal capsule). The study showed that
reduced communicability in patients in regions surrounding the lesions in the
affected hemisphere. In addition, communicability was reduced in homologous
locations in the contralesional hemisphere for a subset of these regions.

= Stroke Lesions

=» Reduced Communiqability

@ Increased Communicability

Figure 3.1: Communicability changes after stroke. Taken from [9] with courtesy

They interpreted this as evidence for secondary degeneration of fibre path-
ways which occurs in remote regions interconnected, directly or indirectly, with
the area of primary damage. They also identified regions with increased commu-
nicability in patients that could represent adaptive, plastic changes post-stroke.

In their work, connectivity information, which is provided by the probabilis-
tic tractography step, takes the from of real-valued, positive weights. Where
a larger weight a,; indicates a greater strength of connection between nodes i
and j (note that strength simply refers to the number of tractography stream-
lines that connect two nodes, and does not relate in a straightforward way to
anatomical strength of connection). However, for calculating communicability,
rather than simply making a zero/one contribution depending upon whether the
walk v; — ry —> r9 — ---rp1 — v; is possible, the term a; ., GryryQryory, Gryyj
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contributes the product of the weights along all the edges in the walk. To avoid
difficulties which may arise if the weights are poorly calibrated, instead of usual
definition of communicability, they have used the normalized communicability
formula as we discussed in Section 1.5.(look at Equation 1.23). If the unnormal-
ized is used, nodes with unusually large weights typically dominate the results.

The results showed evidence for reduced communicability in patients in the
contralesional hemisphere (see Figure 3.1 upper row). These areas in the con-
tralesional hemisphere are remote from the site of primary damage, but are
anatomically connected, directly or indirectly, with their homologues in the le-

sioned hemisphere

This pattern of reduced communicability shows
some similarities to previously reported patterns of
secondary degeneration detected using other imag-
ing modalities or measures. In addition to regions
of reduced communicability, they also found some
areas of greater communicability in patients com-
pared to controls (see Figure 3.1 bottom row).

One possible interpretation of these changes is
that increased communicability reflects adaptive
changes in white matter structure that have oc-
curred secondary to the stroke. An alternative hy-
pothesis is that the changes predated the lesion and
represent a marker of stroke risk.

3.2 Optogenetics+VSD

3.2.1 Optogenetics

To better understand the connectivity of the brain,
it is important to map both structural and func-
tional connections between neurons and cortical re-
gions [12]. In recent years, a set of optogenetic
and imaging tools have been developed that permit
selective manipulation and investigation of neural
systems. These tools have enabled the mapping
of functional connections between stimulated cor-
tical targets and other brain regions. Advantages
of the approach include the ability to arbitrarily
stimulate brain regions that express opsins, allow-
ing for brain mapping independent of behavior or
sensory processing [12]. The ability of opsins to be
rapidly and locally activated allows for investiga-
tion of connectivity with spatial resolution on the
order of single neurons and temporal resolution on
the order of milliseconds.

Optogenetic methods for functional mapping
have been applied in experiments ranging from in
vitro investigation of microcircuits, to in vivo prob-

SIX STEPS TO
OPTOGENETICS
With optogenetic techniques,
researchers can modulate the activity
of targeted neurons using light
STEP1 |
Piece together genetic construct.

Promoter  Gene encoding opsin
todrive i
expression

(light-sensitive
ion channel)

STEP2 |
Insert construct into virus.

STEP3 |

Inject virus into animal brain; opsin
is expressed in targeted neurons.
JEES

STEP4 |

Insert ‘optrode’, fibre-optic
cable plus electrode

STEPS |
Laser light of specific wavelength
opens fon channel in neurons

STEP6 |

Record electrophysiological
and behavioural results.

Figure 3.2: Optogenetics,
from [12]

ing of inter-regional cortical connections, to examination of global connections
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within the whole brain (see Figure 3.2). Here we focus on recently developed
functional mapping methods that use optogenetic single-point stimulation in the
rodent brain and voltage sensitive dyes (VSDs) to assess activity. In particular
we highlight results using red-shifted organic VSDs that permit high temporal
resolution imaging in a manner spectrally separated from Channelrhodopsin-2
(ChR2) activation. VSD maps stimulated by ChR2 were dependent on in-
tracortical synaptic activity and were able to reflect circuits used for sensory
processing.

3.2.2 Voltage Sensitive Dye Imaging

Voltage sensitive dye (VSD) imaging is one method for investigating large-scale
cortical ensemble activity and long-range connections in vivo [10]. VSDs are
membrane-bound, organic, small molecules that are used to monitor membrane
potential changes through various biophysical mechanisms, with the simplest
mechanism being redistributionthe VSD incorporates into the cell membrane
and changes in membrane potential cause the dye molecule to move into or
out of the membrane, leading to relatively linear changes in the fluorescence or
absorbance of the dye. VSD imaging has potentially diffraction-limited spatial
resolution and high temporal resolution. Furthermore, VSD imaging does not
filter for activity based on spiking, but reports membrane potential changes, so
it reflects supra- and subthreshold neuronal activity[10].

Computer Fast camera

4
Time (s)

Visual stimulator

Figure 3.3: Voltage Sensitive Dye Imaging

3.2.3 Combining two techniques

VSD imaging has been employed to investigate long-range cortical connections
and the propagation of cortical activity in vivo, and it has been used to measure
large-scale changes in cortical activity following brain injury such as stroke or
following sensory deprivation in the barrel cortex. While structural connectivity
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can identify long-range connections, such as the connection between the barrel
cortex and motor cortex, VSD imaging can be used to further investigate the
spatiotemporal dynamics of the connection [11].

n=10 trials .***-.

0.4
AF/Fo (%)

Figure 3.4: Functional connectivity detection using VSD. A stimulation at the
associated S1 region turns a remote area (M1) on. Taken from [11] with courtesy

For this essay we have used the data coming from Timothy Murphy Lab'.
They have used transgenic mice that predominantly express ChR2 in layer 5
pyramidal neurons. Mice were given a large craniotomy and the VSD response
was recorded across the entire hemisphere (Lim et al., 2012). Using galvanome-
ter mirrors to steer a 473 nm laser to various cortical regions, we were able to
activate any area of the cortex, including less-studied regions like the parietal
association cortex or secondary cortices|[11].

Bilateral preparation

galvo

Beam  gyrface

1mm

Figure 3.5: Functional connectivity detection using VSD. A stimulation at the
associated S1 region turns a remote area (M1) on. Taken from [11] with courtesy

The VSD response was recorded for both hemispheres and the strength of the
response at specific regions of interest was calculated to estimate the strength

1University of British Columbia
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of the connections between various regions of interest. From this, we were able
to calculated the strength of connections between regions and create a network
diagram to quantitatively display the strength of connections between regions.
A very interesting power that fast functional imaging gave us was the ability to
study time-dependent functional connectivity. Figure 3.6 demonstrates such a
study where we could determine the functional connectivity network at different
times after stimulations.

Unilateral preparation (n=6)

N A gy e 4%
EXCC
FFEFE &

6ms

Fo e
AT T 1 M2/
cG

Posterior - Anterior

o
»

Medial - Lateral

Photostimulation site

Figure 3.6: Time-Dependent Functional Connectivity: connectivity changes
over millisecond timescales after direct cortical photostimulation.[11]

Network analysis revealed a number of interesting points: We identified
regions that are highly connected to many other regions (hub regions), regions
with few connections, and asymmetrical connection strength between regions
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(See Figure 3.7.a). For example, the connections from primary to secondary
sensory areas were significantly stronger than the reciprocal connections (from
secondary to primary sensory areas), suggesting more driver connections in the
bottom-up direction than in top-down. The role of thalamic feedback loops
or subcortical contribution to the VSD signal remain unclear when using this
method.

The combination of VSD imaging and ChR2 stimulation has the advantage
of high spatial and temporal resolution for stimulating and recording, and can
be done quickly and relatively non-invasively compared to traditional cortical
probing methods that rely on electrical stimulation.

3.3 Communicability Analysis of VSD + Opto-
genetics Data

Let us begin our analysis by looking at the pre- and post-stroke connectivity
matrices that we have measured using VSD + Optogenetics technique. Figure
3.7.a shows the connectivity matrix of a healthy mouse where the upper left
corner of the matrix shows ipsilateral connectivity in left hemisphere (L — L).
The bottom right corner represents ipsilateral connectivity in right hemisphere
(R — R). The other two corners show the contralateral connectivity between
two hemispheres (L — R and R — L).

Figure 3.7.b shows the connectivity matrix 8 weeks after a focal stroke in-
duced at right fore-limb cortex (FLR) denoted with red boxes. We observe that
the connectivity map has changed dramatically where we have a significant re-
duction in R — R and a remarkable increase in L — L connectivity.

a C

100%

50%

M2L MBL MFL FLL HLL BCL PTL RSL V2L ViL M2R MBR MFR FLR HLR BCR PTR RSR V2R VIR

Figure 3.7: (a)Connectivity matrix of healthy mouse cortex (b) Connectivity
matrix after stroke in Right Fore-Limb (FLR) shown by red boxes (c)change in
connectivity after 8-weeks. Red box shows the damaged area and the dashed
box shows the contralateral are- Left Fore-Limb (FLL)
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Figure 3.7.c shows the percentage of change in connectivity before and after
stroke where blue squares represent links with reduced connectivity (that are
dominant) and orange ones show the opposite where connectivity has increased.

One may point many interesting physiological observations from this exper-
iment. Here we stress a few:

e There has been a marked increase in the functional connectivity at the
opposite hemisphere and not much of a recovery in the damaged one.

e the highest percentage of increase is at the exact sensory and motor coun-
terpart of the infarct (shown by the dashed boxes).

One possible interpretation could be that, the brain is trying to recover
the altered function of right fore-limb using the similar connectivity pattern at
its left hemisphere counterpart. One interesting observation is the remarkable
cross-connectivity of left sensory and motor areas (denoted by *). On the other
hand, brand new connections have also appeared between between sensory and
motor contralateral areas (shown by +). It seams that the brain tries to recover
sensory-motor function of the damaged hemisphere by connecting it to the intact
one.

A crucial decision to be made is how we are going to interpret the measured
connectivity matrix. Does it simply represent the weighted adjacency graph of
the network as many studies have assumed 7 Our previous results on Estrada
communicability and TEC tell us that the activity correlation between nodes of
a network is not simply identical to the adjacency matrix. In our experimental
case, the entries of connectivity matrix say a;; show the relative signal amplitude
received at node v; from v; and does not imply a direct anatomical connection.
Thus we interpret the connectivity matrix as some form of communicability
matrix instead of taking it as the adjacency matrix of the network.

Recovering the network using communicability distance matrix binarization
as we introduced in Section 2.2 gives interesting results as shown in Figure 3.8.

2L MBL MFL FLL HLL BCL PTL RSL V2L VIL MIR MBRMFR FLR HLR BCR IR RSK VIR VIR

Figure 3.8: (a)obtained graph of anatomic connectivity. Blue: The lost links,
Red: New links, Brown: Unchanged. There are some brown+(red/blue) edges
overlapping. Actually some of these connections were 2-way and now only one
remains. (b) Adjacency matrix after stroke- changes in connectivity after 8-
weeks. Blue: Lost links, Red: New links, Brown: Unchanged
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We observe that although based on the work of Crofts et al. [9] , physical
connectivity in both hemispheres decrease after stroke, the functional connec-
tivity in the opposite cortex increases significantly. These results suggest that
the brain compensates the damage in long-range connections (white matter)
with increased cortical connectivity.
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